xlogI125’s blog

パソコン作業を効率化したい

メモ: ラプラス変換

正しい内容は教科書などを参照してください

ラプラス変換

t<0 のとき y(t)=0 とする


\Large
\begin{align*}
Y(s)
&= \mathcal{L}\left[ y(t) \right] \\
&= \int_0^\infty y(t) \mathrm{e}^{-st} \mathrm{d}t
\end{align*}

変数 s の関数として見る

\Large
\begin{align*}
Y(s-a)
&= \int_0^\infty y(t) \mathrm{e}^{-\left(s - a\right)t} \mathrm{d}t \\
&= \int_0^\infty \left( y(t) \mathrm{e}^{at}     \right) \mathrm{e}^{-st} \mathrm{d}t \\
&= \mathcal{L}\left[ \mathrm{e}^{at} y(t) \right]
\end{align*}

微分された関数のラプラス変換


\Large
\begin{align*}
\mathcal{L}\left[ \frac{\mathrm{d}y(t)}{\mathrm{d}t} \right]
&= s \mathcal{L}\left[ y(t) \right] - y(0) \\
&= s Y(s) - y(0)
\end{align*}

y(t)=1 のとき

\Large
\begin{gather*}
\mathcal{L}\left[ \frac{\mathrm{d}1}{\mathrm{d}t} \right] = s \mathcal{L}\left[ 1 \right] - 1 \\
\mathcal{L}\left[ 1 \right] = \frac{1}{s}
\end{gather*}

Y(s-a) = \mathcal{L}\left[ \mathrm{e}^{at} y(t) \right] より

\Large
\begin{gather*}
\frac{1}{s - a} = \mathcal{L}\left[ \mathrm{e}^{at} 1 \right] \\
\mathcal{L}\left[ \mathrm{e}^{at} \right] = \frac{1}{s - a}
\end{gather*}

機械的a = \mathrm{j}\omega とする

\Large
\begin{gather*}
\mathcal{L}\left[ \mathrm{e}^{\mathrm{j} \omega t} \right]
= \frac{1}{s - \mathrm{j}\omega}
= \frac{s}{s^2 + \omega^2} + \mathrm{j}\frac{\omega}{s^2 + \omega^2}
\end{gather*}

Y(s-a) = \mathcal{L}\left[ \mathrm{e}^{at} y(t) \right] より

\Large
\begin{gather*}
\frac{s-a}{\left(s-a\right)^2 + \omega^2} + \mathrm{j}\frac{\omega}{\left(s-a\right)^2 + \omega^2}
= \mathcal{L}\left[ \mathrm{e}^{at} \mathrm{e}^{\mathrm{j} \omega t} \right]
\end{gather*}

導出過程は気にしない

\Large
\begin{gather*}
\mathcal{L}\left[ \mathrm{e}^{at} \cos \omega t \right] = \frac{s-a}{\left(s-a\right)^2 + \omega^2} \\
\mathcal{L}\left[ \mathrm{e}^{at} \sin \omega t \right] = \frac{\omega}{\left(s-a\right)^2 + \omega^2}
\end{gather*}

y(t)=t^n のとき

\Large
\begin{gather*}
\mathcal{L}\left[ \frac{\mathrm{d}t^n}{\mathrm{d}t} \right] = s \mathcal{L}\left[ t^n \right] - 0 \\
\mathcal{L}\left[ t^n \right] = \frac{n}{s} \mathcal{L}\left[ t^{n-1} \right]
\end{gather*}

n=1 のとき

\Large
\begin{gather*}
\mathcal{L}\left[ t \right]
= \frac{1}{s} \mathcal{L}\left[ 1 \right]
= \frac{1}{s^2}
\end{gather*}

n=2 のとき

\Large
\begin{gather*}
\mathcal{L}\left[ t^2 \right]
= \frac{2}{s} \mathcal{L}\left[ t \right]
= \frac{2}{s^3}
\end{gather*}

積分された関数のラプラス変換

t<0 のとき f(t)=0, g(t)=0 とするので \tau > t のとき g(t-\tau) = 0

\Large
\begin{align*}
\int_0^t f(\tau)g(t-\tau)\mathrm{d}\tau
&= \int_0^\infty f(\tau)g(t-\tau)\mathrm{d}\tau - \int_t^\infty f(\tau)g(t-\tau)\mathrm{d}\tau \\
&= \int_0^\infty f(\tau)g(t-\tau)\mathrm{d}\tau - 0 \\
&= \int_0^\infty f(\tau)g(t-\tau)\mathrm{d}\tau
\end{align*}


\Large
\begin{align*}
\int_{-\tau_0}^\infty f(\tau)g(t-\tau)\mathrm{d}\tau
&= \int_{-\tau_0}^0 f(\tau)g(t-\tau)\mathrm{d}\tau + \int_0^\infty f(\tau)g(t-\tau)\mathrm{d}\tau \\
&= 0 + \int_0^\infty f(\tau)g(t-\tau)\mathrm{d}\tau \\
&= \int_0^\infty f(\tau)g(t-\tau)\mathrm{d}\tau
\end{align*}


\Large
\begin{align*}
\mathcal{L}\left[ \int_0^t f(\tau)g(t - \tau)\mathrm{d}\tau \right]
&= \int_0^\infty \left( \int_0^t      f(\tau)g(t-\tau)\mathrm{d}\tau \right) \mathrm{e}^{-st} \mathrm{d}t \\
&= \int_0^\infty \left( \int_0^x      f(y)g(x-y)\mathrm{d}y \right) \mathrm{e}^{-sx} \mathrm{d}x \\
&= \int_0^\infty \left( \int_0^\infty f(y)g(x-y)\mathrm{d}y \right) \mathrm{e}^{-sx} \mathrm{d}x \\
&= \int_0^\infty \left( \int_0^\infty f(y)g(x-y) \mathrm{e}^{-sx} \mathrm{d}y \right) \mathrm{d}x \\
&= \int_0^\infty \left( \int_0^\infty f(y) \mathrm{e}^{-sy} g(x-y) \mathrm{e}^{-s\left(x-y\right)} \mathrm{d}y \right) \mathrm{d}x \\
&= \int_0^\infty \left( \int_0^\infty f(y) \mathrm{e}^{-sy} g(x-y) \mathrm{e}^{-s\left(x-y\right)} \mathrm{d}x \right) \mathrm{d}y \\
&= \int_0^\infty f(y) \mathrm{e}^{-sy} \left( \int_0^\infty g(x-y) \mathrm{e}^{-s\left(x-y\right)} \mathrm{d}x \right) \mathrm{d}y \\
&= \int_0^\infty f(y) \mathrm{e}^{-sy} \left( \int_0^\infty g(\tau) \mathrm{e}^{-s\tau} \mathrm{d}\tau \right) \mathrm{d}y \\
&= \left( \int_0^\infty f(y) \mathrm{e}^{-sy} \mathrm{d}y \right) \left( \int_0^\infty g(\tau) \mathrm{e}^{-s\tau} \mathrm{d}\tau \right) \\
&= \left( \int_0^\infty f(t) \mathrm{e}^{-st} \mathrm{d}t \right) \left( \int_0^\infty g(t) \mathrm{e}^{-st} \mathrm{d}t \right) \\
&= \mathcal{L}\left[ f(t) \right] \mathcal{L}\left[ g(t) \right] \\
&= F(s)G(s)
\end{align*}

g(t)=1 のとき

\Large
\begin{gather*}
\mathcal{L}\left[ \int_0^t f(\tau) \mathrm{d}\tau \right] = F(s) \frac{1}{s}
\end{gather*}


\Large
\begin{align*}
\mathcal{L}\left[ \int_0^t y(t) \mathrm{d}t \right]
&= \frac{1}{s} \mathcal{L}\left[ y(t) \right] \\
&= \frac{1}{s} Y(s)
\end{align*}

終値


\Large
\begin{gather*}
\left\{
\begin{aligned}
&\lim_{s \to 0} \int_0^\infty \left( \frac{\mathrm{d}y(t)}{\mathrm{d}t} \right) \mathrm{e}^{-st} \mathrm{d}t &{}
&= \lim_{s \to 0} \mathcal{L}\left[ \frac{\mathrm{d}y(t)}{\mathrm{d}t} \right] &{}
&= \lim_{s \to 0} \left( s \mathcal{L}\left[ y(t) \right] - y(0) \right) \\
%
&\lim_{s \to 0} \int_0^\infty \left( \frac{\mathrm{d}y(t)}{\mathrm{d}t} \right) \mathrm{e}^{-st} \mathrm{d}t &{}
&= \int_0^\infty \left( \frac{\mathrm{d}y(t)}{\mathrm{d}t} \right) \mathrm{d}t &{}
&= y(\infty) - y(0)
\end{aligned}
\right.
\end{gather*}


\Large
\begin{gather*}
y(\infty) = \lim_{s \to 0} s \mathcal{L}\left[ y(t) \right] = \lim_{s \to 0} s Y(s) \\
\end{gather*}

初期値


\Large
\begin{gather*}
\left\{
\begin{aligned}
&\lim_{s \to \infty} \int_0^\infty \left( \frac{\mathrm{d}y(t)}{\mathrm{d}t} \right) \mathrm{e}^{-st} \mathrm{d}t &{}
&= \lim_{s \to \infty} \mathcal{L}\left[ \frac{\mathrm{d}y(t)}{\mathrm{d}t} \right] &{}
&= \lim_{s \to \infty} \left( s \mathcal{L}\left[ y(t) \right] - y(0) \right) \\
%
&\lim_{s \to \infty} \int_0^\infty \left( \frac{\mathrm{d}y(t)}{\mathrm{d}t} \right) \mathrm{e}^{-st} \mathrm{d}t &{}
&= \int_0^\infty 0 \mathrm{d}t &{}
&= 0
\end{aligned}
\right.
\end{gather*}


\Large
\begin{gather*}
y(0) = \lim_{s \to \infty} s \mathcal{L}\left[ y(t) \right] = \lim_{s \to \infty} s Y(s) \\
\end{gather*}